Threshold regression with nonparametric sample splitting

نویسندگان

چکیده

This paper develops a threshold regression model where an unknown relationship between two variables nonparametrically determines the threshold. We allow observations to be cross-sectionally dependent so that can applied determine spatial border for sample splitting over random field. derive uniform rate of convergence and nonstandard limiting distribution nonparametric estimator. also obtain root-n consistency asymptotic normality coefficient illustrate empirical relevance this new by estimating tipping point in social segregation problems as function demographic characteristics; determining metropolitan area boundaries using nighttime light intensity collected from satellite imagery.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression for Threshold Data

Consider a detector which records the times at which the realizations of a nonparametric regression model exceed a certain threshold. If the error distribution is known, the regression function can still be identified from these threshold data. We construct estimators for the regression function. They are transformations of kernel estimators. We determine the bandwidth which minimizes the asymp...

متن کامل

Nonparametric Threshold Regression: Estimation and Inference∗

The present work describes a simple approach to estimating the location of a threshold/change point in a nonparametric regression. This model has connections both to the time-series and regression discontinuity literatures. The estimator leverages a simple decomposition, giving it the form of a semiparametric smooth coefficient model. Optimal bandwidth selection and a suite of testing facilitie...

متن کامل

Nonparametric Regression

This article has no abstract.

متن کامل

Parametric and Nonparametric Regression with Missing X’s—A Review

This paper gives a detailed overview of the problem of missing data in parametric and nonparametric regression. Theoretical basics, properties as well as simulation results may help the reader to get familiar with the common problem of incomplete data sets. Of course, not all occurences can be discussed so this paper could be seen as an introduction to missing data within regression analysis an...

متن کامل

Nonparametric Regression with Correlated Errors

Nonparametric regression techniques are often sensitive to the presence of correlation in the errors. The practical consequences of this sensitivity are explained, including the breakdown of several popular data-driven smoothing parameter selection methods. We review the existing literature in kernel regression, smoothing splines and wavelet regression under correlation, both for short-range an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2023

ISSN: ['1872-6895', '0304-4076']

DOI: https://doi.org/10.1016/j.jeconom.2022.07.005